NANOPOWER SERIES

Magnetoresistive Sensor ICs

DESCRIPTION

Honeywell Nanopower Series Magnetoresistive (MR) Sensor ICs are ultra-sensitive devices designed to accommodate a wide range of applications with large air gaps, small magnetic fields, and low power requirements.

The sensor ICs respond to either a North or South pole applied in a direction parallel to the sensor. They do not require the magnet polarity to be identified, simplifying installation and potentially reducing system cost.

These sensor ICs use a very low average current consumption and a push-pull output which does not require a pull-up resistor. The sensor ICs can operate from a supply voltage as low as 1.65 V, promoting energy efficiency.

The Nanopower Series is available in two magnetic sensitivities to accommodate a variety of application needs:

- **SM351LT:** For applications requiring ultra high magnetic sensitivity (7 G typical operate, 11 G maximum operate) and a very low current draw (360 nA typical)
- **SM353LT:** For applications requiring very high magnetic sensitivity (14 G typical operate, 20 G maximum operate) and a very low current draw (310 nA typical)

These Magnetoresistive Sensor ICs, Nanopower Series, are supplied in the subminiature SOT-23 surface mount package on tape and reel (3000 units per reel), for use in automated pick-andplace component installation.

FEATURES

- **High sensitivity:** 7 Gauss typ., 11 Gauss max. (SM351LT); 14 G typ., 20 Gauss max. (SM353LT)
- Nanopower: Average current of 360 nA typ. (SM351LT) and 310 nA typ. (SM353LT)
- **Supply voltage range:** 1.65 Vdc to 5.5 Vdc; simplifies design-in
- Omnipolar sensing: Activates with either pole from a magnet
- Temperature range: -40°C to 85°C [-40°F to 185°F]
- **Push-pull output:** Does not require external pull-up resistor
- · Non-chopper stabilized design
- **RoHS-compliant materials:** Meets Directive 2002/95/EC
- Package: SOT-23

APPLICATIONS

Industrial

- Mobile equipment (i.e., handheld computing equipment, scanners)
- Water, electric, and gas utility meters
- Building access control; reed switch replacement for battery-operated security systems
- Industrial smoke detectors

Medical

- Exercise equipment
- Infusion pumps
- Drawer position sensing (e.g., medical cabinets)
- Hospital beds

White Goods

- Lid, door, and drawer position detection
- Fluid flow

Medium-Sized Consumer Electronics

• Battery-optimization position sensor

PORTFOLIO

Nanopower series sensors are part of a comprehensive line of Honeywell pressure sensors.

To view the entire product portfolio, click here.

NANOPOWER SERIES

TABLE 1A. ELECTRICAL SPECIFICATIONS ($V_s = 1.65 \text{ V}$ TO 5.5 V, Ta = -40°C TO 85 °C [-40°F TO 185°F], TYP. AT 1.8 V, 25°C [77°F] UNLESS OTHERWISE SPECIFIED.)

Characteristic	Condition	Min.	Тур.	Max.	Unit
Supply voltage (Vs)	Vs reference to ground	1.65	1.8	5.5	V
Awake current SM351LT SM353LT	_	_ 0.3	1 0.8	5 5	mA
Awake time	_	_	15	_	μs
Sleep current		_ _ _ _	0.2 0.16 0.2 2.6	8 0.8 1 8	μΑ
Sleep time	-	30	100	180	ms
Average current SM351LT SM353LT	0.015 % duty cycle, typ.		360 310	6640 6350	nA
Output voltage low (V _{oL}) high (V _{OH})	load current = 100 μA	0 Vs - 0.15	0.03 Vs - 0.03	0.15 Vs	V

NOTICE

These magnetoresistive sensor ICs may have an initial output in either the ON or OFF state if powered up with an applied magnetic field in the differential zone (applied magnetic field >Brp and <Bop). Honeywell recommends allowing 10 µs for output voltage to stabilize after supply voltage has reached its final rated value.

TABLE 1B. ELECTRICAL SPECIFICATIONS (V _s = 1.8 V, Ta = 25°C [77°F].)					
Characteristic	Condition	Min.	Тур.	Max.	Unit
Awake current SM351LT SM353LT	_	_ _	1 0.8	1.12 0.87	mΑ
Awake time	_	_	15	_	μs
Sleep current	_	_	0.2	0.59	μΑ
Sleep time	_	90	100	120	ms
Average current SM351LT SM353LT	0.015 % duty cycle, typ.	_ _	350 350	620 600	nA

NOTICE

The sensor will turn LOW when the magnetic field is present and switch to HIGH when the field is removed. The sensor will latch and hold the state during the sleep "mode".

NANOPOWER SERIES

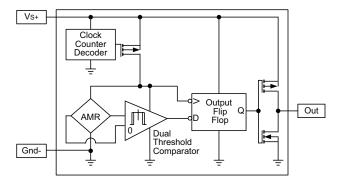
TABLE 2. MAGNETIC SPECIFICATIONS (V = 1.65 V TO 5.5 V. Ta = -40° C TO 85°C [-40° F TO 185°F].)

TABLE 2. MAGNETIC SPECIFICATIONS (*s = 1.03 * 10 3.3 *, 1a = 40 € 10 33 € [40 1 10 103 1].)						
Characteristic	Min.	Тур.	Max.	Unit		
SM351LT operate (positive) release (positive) hysteresis	3 2 *	7 5 2	11 - -	Gauss		
SM353LT operate (positive) release (positive) hysteresis	6 3 *	14 10 4	20 - -	Gauss		

^{*}At $1.65\,\mathrm{V}$ and $-40\,\mathrm{^{\circ}C}$, the hysteresis can reach $0.1\,\mathrm{Gauss}$.

NOTICE

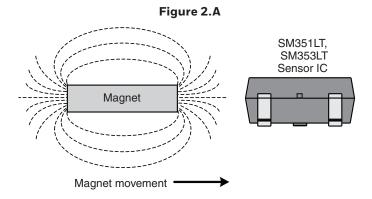
The magnetic field strength (Gauss) required to cause the switch to change state (operate and release) will be as specified in the magnetic characteristics. To test the switch against the specified magnetic characteristics, the switch must be placed in a uniform magnetic field.


TABLE 3. ABSOLUTE MAXIMUM RATINGS					
Characteristic	Condition	Min.	Тур.	Max.	Unit
Operating temperature	ambient	-40 [-40]	_	85 [185]	°C [°F]
Soldering temperature	ambient applied for <10 s	_	_	265 [509]	°C [°F]
Supply voltage (V _S)	_	-0.5	_	6	V
Output (load) current	_	_	_	5	mA

NOTICE

Absolute maximum ratings are the extreme limits that the device will withstand without damage to the device. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached, nor will the device necessarily operate at absolute maximum ratings.

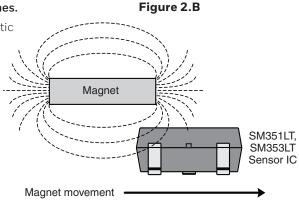
Figure 1. Block/Electrical Diagram



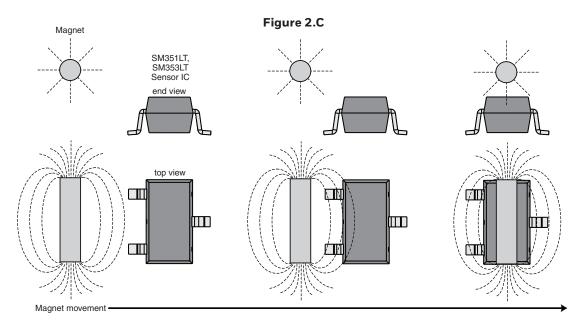
NANOPOWER SERIES

Figure 2. Alignment of the Magnet to the Omnipolar Magnetoresistive Sensor IC

Ideal alignment: The magnet is aligned in the same plane as the sensor IC.

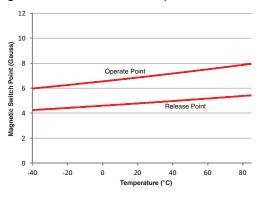

The magnetic flux lines stay horizontal as the magnet approaches the sensor IC (see Figure 2.A).

Offset alignment: The magnet is not aligned in the same plane as the sensor IC.


Parallel magnet approach to the sensor IC may cause dead zones.

Dead zones may occur when the majority of the magnet's magnetic flux lines become vertical as it approaches the sensor IC, turning the sensor IC to ON, then OFF, then ON (see Figure 2.B). \checkmark

Perpendicular magnet approach to the sensor IC eliminates possible dead zones.


The sensor IC detects the approaching magnet's horizontal magnetic flux lines, turning the sensor IC to ON. The sensor IC stays ON as the magnet continues to approach. When the magnet is located directly over the sensor IC, all magnetic flux lines are now horizontal (see Figure 2.C). (Note: This alignment decreases the magnetic flux strength at the sensor IC.)

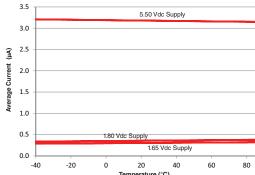
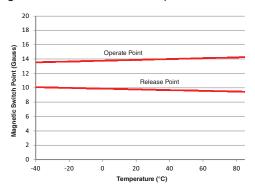

NANOPOWER SERIES

Figure 3. SM351LT Typical Performance Characteristics

Magnetic Performance vs Temperature (Vs = 1.8 V)


Average Current vs Temperature

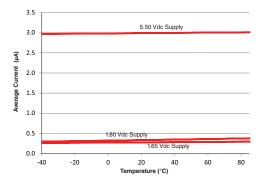
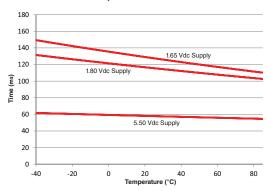
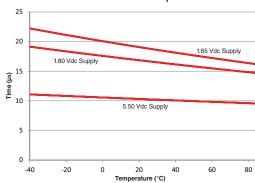
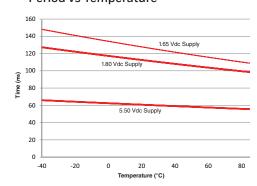
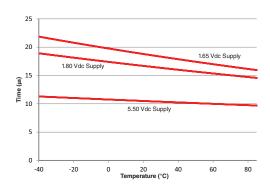

Temperature (°C)

Figure 4. SM353LT Typical Performance Characteristics

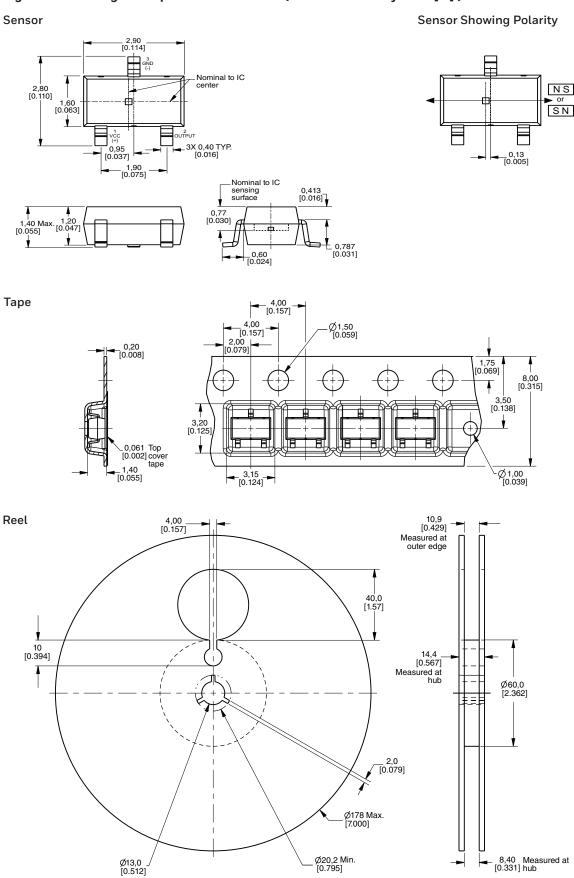

Magnetic Performance vs Temperature (Vs = 1.8 V)


Average Current vs Temperature


Period vs Temperature


Active Mode Time vs Temperature

Period vs Temperature



Active Mode Time vs Temperature

NANOPOWER SERIES

Figure 5. Mounting and Tape/Reel Dimensions (For reference only. mm/[in].)

TABLE 4. ORDER GUIDE				
Catalog Listing	Description			
SM351LT	Magnetoresistive sensor IC, high sensitivity (7 G typ.), nanopower, SOT-23 package, tape and reel packaging (3000 units per reel)			
SM353LT	Magnetoresistive sensor IC, high sensitivity (14 G typ.), nanopower, SOT-23 package, tape and reel packaging (3000 units per reel)			

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective.

The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While Honeywell may provide information or engineering support for its products through Honeywell personnel, literature and website, it is the buyer's sole responsibility to determine the suitability of the Honeywell product(s) for the buyer's requirements.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

△ WARNINGPERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

⚠ WARNINGMISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

For more information

Honeywell services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit our website or call:

USA/Canada +1 302 613 4491 Latin America +1 305 805 8188 Europe +44 1344 238258 Japan +81 (0) 3-6730-7152 Singapore +65 6355 2828 Greater China +86 4006396841

Honeywell Sensing Solutions

830 East Arapaho Road Richardson, TX 75081 www.honeywell.com

