NEW

G9TB

AC Power Latching Relay

120 A Compact and high power latching relay

High power switching: 120 A, 276 VAC
Compact size: 37 mm × 43 mm × 22 mm

• Low temperature-rise

• High overcurrent capability, conforming to IEC62055-31 UC3

RoHS Compliant

Model Number Structure

G9TB- $\frac{\square}{1}$ $\frac{1}{2}$ $\frac{A}{3}$ $\frac{\square}{4}$ - $\frac{E}{5}$

Relay Function
 Number of poles
 Single-winding latching
 1: 1-Pole

U: Single-winding latchingK: Double-winding latching

4. Terminal shape
TH: M8 securing screw

TH: M8 securing screw TW: Welding terminals

5. Classification

E: High capacity

Application Examples

• Smart Meter

Lighting control

PV Inverter

• EV Charger

Ordering Information

Classification	Contact Form	Terminal Shape	Enclosure rating	Model	Rated coil voltage	Minimum packing unit
Single coil		M8 securing screw		G9TB-U1ATH-E	12 VDC	25 pcs/tray
	SPST-NO	Welding terminals	Flux protection	G9TB-U1ATW-E		
Double coils		M8 securing screw		G9TB-K1ATH-E	12 VDC	
		Welding terminals		G9TB-K1ATW-E		

3. Contact Form

A: SPST-NO

Note. When ordering, add the rated coil voltage to the model number.

Example: G9TB-U1ATH-E DC12

Rated coil voltage

However, the notation of the coil voltage on the product case as well as on the packing will be marked as[][] VDC.

Ratings

Coil

Single-winding Latching Type

	Item	Rated current (mA)	Coil resistance (Ω)	Must set voltage	Must reset voltage	Max. voltage	Power consumption	
Rated Voltage	(V)				% of rated voltage		Set coil (W)	Reset coil (W)
DC	12	225	53.3	80% max.	80% max.	110% max.	Approx. 2.7	

Double-winding Latching Type

	Item	Rated cur	rrent (mA)	Coil resis	stance (Ω)	Must set voltage	Must reset voltage	Max. voltage	Power cor	nsumption
Rated Voltage	(V)	Set coil	Reset coil	Set coil	Reset coil		% of rated voltage		Set coil (W)	Reset coil (W)
DC	12	451	451	26.6	26.6	80% max.	80% max.	110% max.	Approx. 5.4	Approx. 5.4

Note 1. The rated current and coil resistance were measured at a coil temperature of 23°C with tolerances of ± 10%.

Note 2. The operating characteristics are measured at a coil temperature of 23°C.

Note 3. The maximum permissible voltage is the maximum value of the fluctuation range for the Relay coil operating power supply and was measured at an ambient temperature of 23°C.

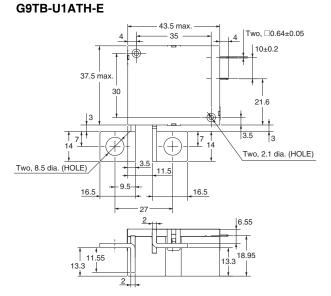
Contacts

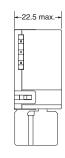
	Model	G9TB-U1A□ -E/G9TB-K1A□ -E				
Item	Load	Resistive load	Inductive load (PF=0.5)			
Contact type		SPST-NO				
Contact material		Ag Alloy				
Rated load		120 A at 276 VAC	100 A at 276 VAC			
Rated carry current		120 A				
Max. switching voltage		276 VAC				
Max. switching current		120 A	100 A			

Characteristics

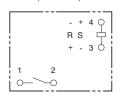
Item		G9TB-U1A□ -E	G9TB-K1A□ -E			
Contact resistance *1		$0.4~\text{m}\Omega$ max.				
Set time *2		25 ms max.	20 ms max.			
Reset time *2		25 ms max. 20 ms max.				
Minimum pulse width		100 ms				
Maximum pulse width		1,000 ms				
Insulation resistance *	3	1,000 M Ω min.				
	Between coil and contacts	4,000 VAC, 50/60 Hz for 1 min				
Dielectric strength Between contacts of the same polarity		2,000 VAC, 50/60 Hz for 1 min				
Impulse withstand voltage Between coil and contacts		8 kV				
Vibration resistance	Destruction	10 to 55 to 10 Hz, 0.75 mm single amplitude (1.5 mm double amplitude)				
VIDIALION TESISLANCE	Malfunction	10 to 55 to 10 Hz, 0.75 mm single amplitude (1.5 mm double amplitude)				
Shock resistance Destruction		1,000 m/s ²				
Malfunction		100 m/s ²				
Mechanical		100,000 operations min. (at 7,200 operations/h)				
Durability		10,000 operations typical, resistive load 120 A, 276 VAC (operation: ON for 10 sec, OFF for 20 sec)				
	Electrical *4	5,000 operations, resistive load 100 A, 276 VAC and then 5,000 operations, inductive load (PF=0.5) 100 A, 276 VAC (operation: ON for 10 sec, OFF for 20 sec) *5				
Ambient operating temperature		-40 to 85°C (with no icing or condensation)				
Ambient operating humidity		5 to 85%				
Weight		Approx. 70 g				

Note. The values given above are initial values.

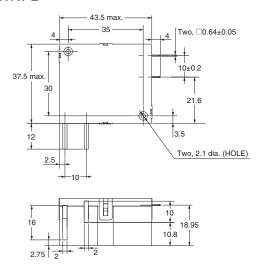

- Measurement conditions: 24 VDC, 1 A, voltage drop method.

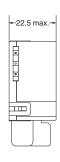

 Measurement conditions: Rated operating voltage applied, not including contact bounce.

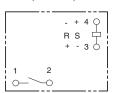
 Ambient temperature: 23°C
- Measurement conditions: The insulation resistance was measured with a 500 VDC megohm meter at the same locations as the dielectric strength was measured. Contact your OMRON sales representative for Electrical Durability technical data.


 The characteristic meets IEC62055-31 test requirement.

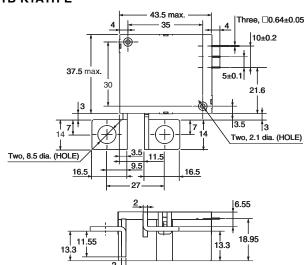
Dimensions

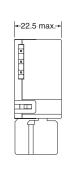


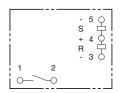



Check carefully the coil polarity of the Relay.

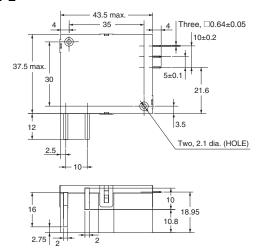
G9TB-U1ATW-E

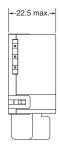


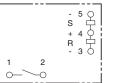

Terminal arrangement/Internal Connections (TOP VIEW)


Check carefully the coil polarity of the Relay.

G9TB-K1ATH-E




Terminal arrangement/Internal Connections (TOP VIEW)

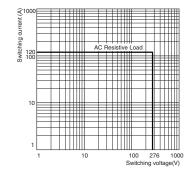

Check carefully the coil polarity of the Relay.

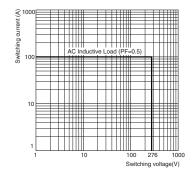
G9TB-K1ATW-E

Check carefully the coil polarity of the Relay.

Note 1. Relay is delivered as "set" status unless specified otherwise. However, the status may change due to the shock from transportation or mounting operations. Therefore, it is recommended the relay should be set to the expected status via a power supply before being used.

Note 2. In order to maintain "set" or "reset" status, the energizing voltage to coil & the pulse width shouldn't lower then the rated value.


Note 3. Do not energize both of set and reset coil simultaneously.


Note 4. Energizing time longer than 1,000 ms should be avoided.

Engineering Data

Maximum Switching Capacity

G9TB-U1A□-E G9TB-K1A□-E

.

Safety Precautions

• Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use

Installation

- The relay contacts are polarized. Incorrect wiring may cause a failure to break the circuit. Wire the Relay with care.
- Install the Relays in locations that are as dry as possible and have as little dust, dirt, and harmful gas.
- Using the Relay under high temperature, high humidity, or harmful gas may deteriorate its performance characteristics due to condensation or corrosive materials, resulting in failure or burn damage to the Relay.

Relay Service Life

 The electrical durability of these Relays is specified as the number of load switching operations under a resistive load and OMRON-specified standard testing conditions.

The coil drive circuit, ambient environment, switching frequency, or load conditions (e.g., inductive load or capacitor load) may reduce the service life and possibly lead to failure to break. Always confirm the service life in the actual equipment.

Wiring

- Be sure to tighten all screws to the appropriate torque given below.
- Loose screws may result in burning due to abnormal heat generation during energization.
- M8 screws : 8.82 to 9.80 N·m
- Use a spring washer in order to prevent deformation and it from loosening.
- Allow suitable slack on leads when wiring, and do not apply excessive force to the terminals.

G9TB

Note: Do not use this document to operate the Unit.

[•] Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.

Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.