Ultra Field Stop IGBT, 1200 V, 60 A

General Description

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Ultra Field Stop Trench construction, and provides superior performance in demanding switching applications, offering both low on-state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

Features

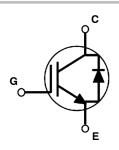
- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature $T_J = 175$ °C
- Low Saturation Voltage: $V_{CE(sat)} = 1.7 \text{ V (Typ.)}$ @ $I_C = 60 \text{ A}$
- 100% of the Parts Tested for I_{LM} (Note 1)
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- RoHS Compliant

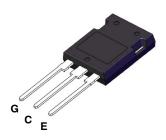
Applications

Solar Inverter, UPS

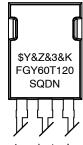
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Description	Value	Unit
V _{CES}	Collector to Emitter Voltage	1200	V
V_{GES}	Gate to Emitter Voltage	±25	V
	Transient Gate to Emitter Voltage	±30	V
I _C	Collector Current @ (T _C = 25°C)	120	Α
	Collector Current @ (T _C = 100°C)	60	Α
I _{LM} (1)	Pulsed Collector Current @ (T _C = 25°C)	240	Α
I _{CM} (2)	Pulsed Collector Current	240	Α
IF	Diode Forward Current @ (T _C = 25°C)	120	Α
	Diode Forward Current @ (T _C =100°C)	60	Α
I _{FM}	Pulsed Diode Max. Forward Current	240	Α
P _D			W
	@ (T _C = 25°C) @ (T _C =100°C)	517 259	W
TJ	Operating Junction Temperature	-55 to +175	°C
T _{stg}	Storage Temperature Range	-55 to +175	°C
T _L	Maximum Lead Temp. For soldering Purposes, 1/8" from case for 5 seconds	300	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. VCC = 800 V, V_{GE} = 15 V, I_C = 240 A, \dot{R}_G = 68 Ω , Inductive Load 2. Repetitive rating: Pulse width limited by max. Junction temperature

ON Semiconductor®


www.onsemi.com

Power TO247 (TO-247H03)

MARKING DIAGRAM

= ON Semiconductor Logo = Data Code (Year & Week)

FGY60T120SQDN= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	FGY60T120SQDN	Unit
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case, Max.	0.29	°C/W
$R_{\theta JA}(Diode)$	Thermal Resistance, Junction to Case, Max.	0.42	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS							
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 500 \mu A$	1200	_	-	V	
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	400	μΑ	
I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0 V	_	_	±200	nA	
ON CHARAC	TERISTICS						
V _{GE(th)}	G-E Threshold Voltage	$I_C = 400 \mu A, V_{CE} = V_{GE}$	4.5	5.5	6.5	V	
		I _C = 60 A _, V _{GE} = 15 V	-	1.7	1.95	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 60 A _, V _{GE} = 15 V, T _C = 175°C	-	2.3	_	V	
DYNAMIC CI	HARACTERISTICS	!	<u>I</u>	Į.		<u> </u>	
C _{ies}	Input Capacitance		_	7147	-	pF	
C _{oes}	Output Capacitance	$V_{CE} = 20 \text{ V, } V_{GE} = 0 \text{ V,}$ f = 1 MHz	-	203	-	pF	
C _{res}			-	114	_	pF	
SWITCHING	CHARACTERISTICS		•				
t _{d(on)}	Turn-On Delay Time	V_{CC} = 600 V, I_{C} = 60 A, R_{G} = 10 Ω , V_{GE} = 15 V,	-	52	-	ns	
t _r	Rise Time		-	84	-	ns	
td(off)	Turn-Off Delay Time		_	296	-	ns	
t _f	Fall Time	Inductive Load, T _C = 25°C	_	56	-	ns	
Eon	Turn-On Switching Loss		_	5.15	_	mJ	
Eoff	Turn-Off Switching Loss		_	1.82	_	mJ	
Ets	Total Switching Loss		_	6.97	-	mJ	
td(on)	Turn-On Delay Time		-	40	-	ns	
t _r	Rise Time	$V_{CC} = 600 \text{ V}, I_{C} = 60 \text{ A}, R_{G} = 10 \Omega,$	_	72	_	ns	
td(off)	Turn-Off Delay Time	$V_{GE} = 15 V$,	_	324	_	ns	
t _f	Fall Time	Inductive Load, T _C = 175°C	_	144	_	ns	
Eon	Turn-On Switching Loss		_	7.18	_	mJ	
Eoff	Turn-Off Switching Loss		-	3.1	-	mJ	
Ets	Total Switching Loss		-	10.28	ı	mJ	
Q_g	Total Gate Charge		-	311	-	nC	
Qge	Gate to Emitter Charge	$V_{CE} = 600 \text{ V}, I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V}$	_	57	-	nC	
Qgc	Gate to Collector Charge		_	153	-	nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25$ °C unless otherwise noted)

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
.,	Diede Fee aut Valles	. 60 4	T _C = 25°C	-	3.4	4	.,
V_{FM}	Diode Forward Voltage	I _F = 60 A	T _C = 175°C	-	3.2	-	V
	Diede De com Decembra	$V_{R} = 600 \text{ V},$ $I_{F} = 60 \text{ A},$ $dI_{F}/dt = 500 \text{ A/}\mu\text{s}$	T _C = 25°C	-	91	-	ns
t _{rr}	rr Diode Reverse Recovery Time		T _C = 175°C	-	309	-	
Q _{rr}	Diada Payaraa Pagayary Charga		T _C = 25°C	-	860	-	nC
**	Diode Reverse Recovery Charge		T _C = 175°C	-	4902	-	
I _{rrm}	Diada Payaraa Pagayary Current		T _C = 25°C	_	19	-	А
	Diode Reverse Recovery Current		T _C = 175°C	-	32	-	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Quantity
FGY60T120SQDN	FGY60T120SQDN	TO-247-3LD (Pb-Free)	30/Tube

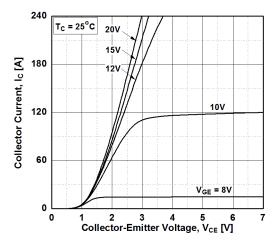


Figure 1. Typical Output Characteristics

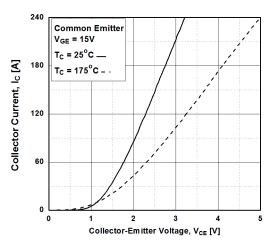


Figure 3. Typical Saturation Voltage Characteristics

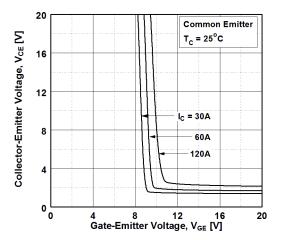


Figure 5. Saturation Voltage vs. V_{GE}

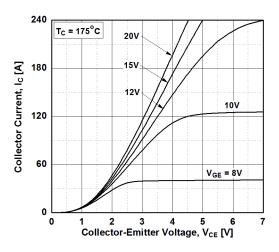


Figure 2. Typical Output Characteristics

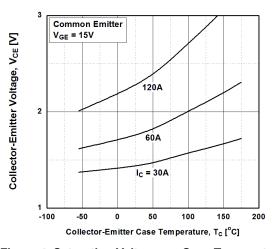


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

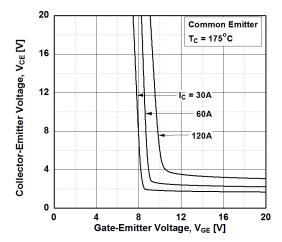


Figure 6. Saturation Voltage vs. V_{GE}

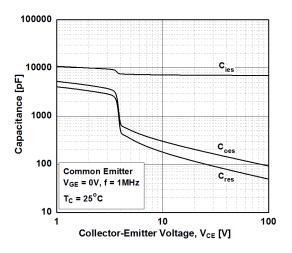


Figure 7. Capacitance Characteristics

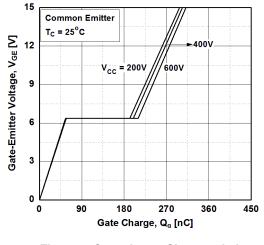


Figure 8. Gate charge Characteristics

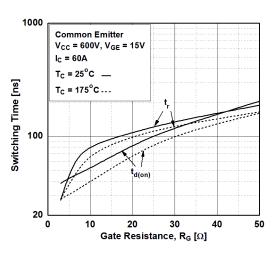


Figure 9. Turn-on Characteristics vs. Gate Resistance

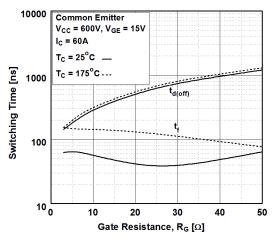


Figure 10. Turn-off Characteristics vs. Gate Resistance

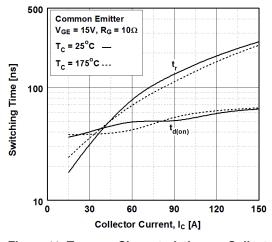


Figure 11. Turn-on Characteristics vs. Collector Current

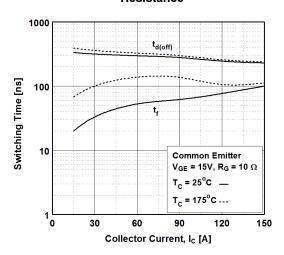


Figure 12. Turn-off Characteristics vs. Collector Current

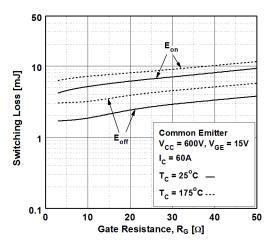


Figure 13. Switching Loss vs. Gate Resistance

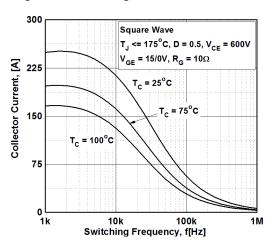


Figure 15. Load Current vs. Frequency

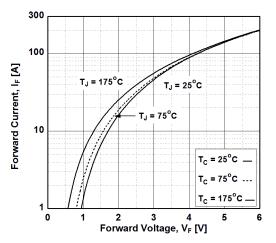


Figure 17. Forward Characteristics

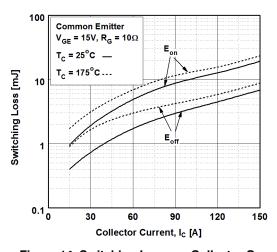


Figure 14. Switching Loss vs. Collector Current

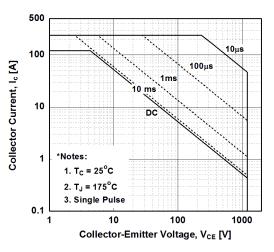


Figure 16. SOA Characteristics

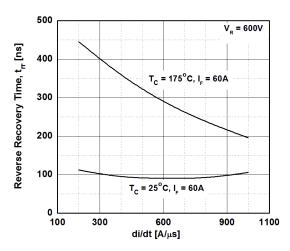
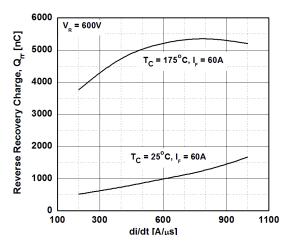



Figure 18. Reverse Recovery Time vs. di_F/dt

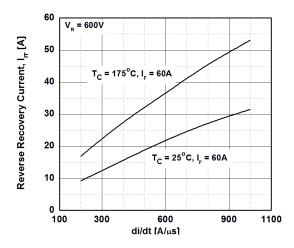


Figure 19. Reverse Recovery Charge vs. di_{F}/dt

Figure 20. Reverse Recovery Current vs. di_F/dt

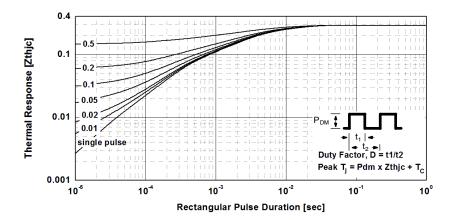


Figure 21. Transient Thermal Impedance if IGBT

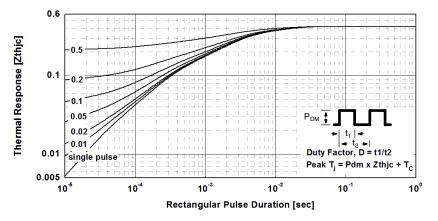
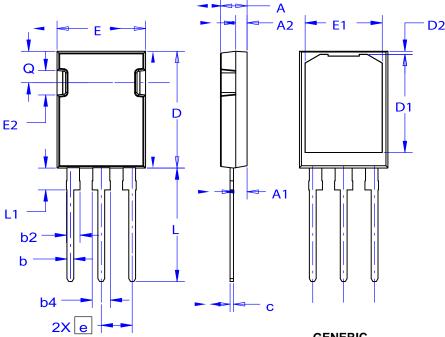


Figure 22. Transient Thermal Impedance if Diode



TO-247-3LD CASE 340CD ISSUE A

DATE 18 SEP 2018

NOTES:

- A. THIS PACKAGE DOES NOT CONFORM TO ANY STANDARDS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.

DIM	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	4.58	4.70	4.82	
A1	2.20	2.40	2.60	
A2	1.80	2.00	2.20	
D	20.32	20.57	20.82	
Е	15.37	15.62	15.87	
E2	4.12	4.32	4.52	
е	~	5.45	~	
L	19.90	20.00	20.10	
L1	3.69	3.81	3.93	
Q	5.34	5.46	5.58	
b	1.10	1.20	1.30	
b2	2.10	2.24	2.39	
b4	2.87	3.04	3.20	
С	0.51	0.61	0.71	
D1	16.63	16.83	17.03	
D2	0.51	0.93	1.35	
E1	13.40	13.60	13.80	

GENERIC
MARKING DIAGRAM*

XXXXXXXX AYWWG

XXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13857G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative