

DIN Rail Mount 22.5 mm ENRM ENRM Part number 84870214

Product replaced by the new ENRM 84 870 210

Part numbers

Type	Characteristics	Voltages
84 870 214 ENRM	Monitoring filling (UP) Monitoring emptying (DOWN)	230 V AC

Specifications

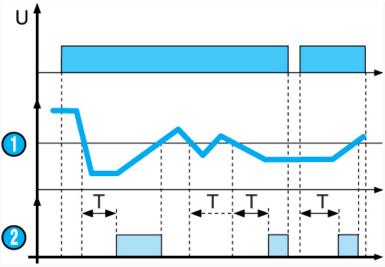
Operating range	0.85 →1.10 x Un
Maximum power consumption	3 VA
Adjustable sensitivity	250 Ω→1 ΜΩ
Measurement accuracy (at maximum sensitivity)	± 30 %
Electrode voltage (max)	24 V AC (50/60 Hz)
Electrode current (maximum)	1 mA (50/60 Hz)
Maximum cable capacity	10 nF
Response time high level	300 ms
Response time low level	500 ms
Output relay (according to AC1 resistive load)	1 AgNi changeover relay 8 A AC max.
Galvanic isolation via transformer (4 kV, 8 mm creepage distance)	Class II
Isolation of contacts and electrodes from power supply	2.5 kV AC
Operating temperature range (°C)	-20 →+50 °C
Storage temperature range (°C)	-40 →+70 °C
Weight (g)	150

Principles

Operating principle

General principle:

The ENRM monitors the levels of conductive liquids. The principle is based on measuring the apparent resistance of the liquid between two submerged probes. When this value is lower than the preset threshold displayed on the unit's front panel, the relay changes state. To prevent any occurrences of electrolysis, an AC current is passed through the probes. A rotary switch on the front panel can be used to select the desired function and sensitivity range. A level can be monitored using the 2nd rotary switch.


In this instance, the max. probe remains above the liquid and an adjustable time delay prevents the wave effect.

A green LED indicates that the supply voltage is present.

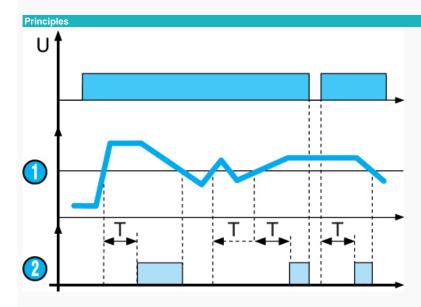
A yellow LED indicates the output relay's state.

When the green and yellow LEDs are flashing, this indicates an incompatible adjustment position.

Principles

Monitoring a level, filling function, activation time

(level : 1 - on delay, function Up LS (Low Sensitivity : 250Ω to $5 k\Omega$), Up St (Standard Sensitivity : $5 k\Omega$ to $100 k\Omega$), Up HS (High Sensitivity : $50 k\Omega$ to $1 M\Omega$).


When the level of liquid drops below the probe for a period exceeding the value of time delay T set on the front panel, the relay energises and remains on until the level of liquid reaches the probe again.

If the level of liquid returns above the level set before the time delay elapses, the relay does not come on.

Note

When the power returns after a power break, the output relay only energises after time delay T if the level of liquid is below the threshold.

No.	Legend
0	Level
0	Relay

Monitoring a level, emptying function, activation time

 $(level: 1 - on \ delay, \ function \ Dwn \ LS \ (Low \ Sensitivity: 250 \ \Omega \ to \ 5 \ k\Omega), \ Dwn \ St \ (Standard \ Sensitivity: 5 \ k\Omega \ to \ 100 \ k\Omega), \ Dwn \ HS \ (High \ Sensitivity: 50 \ k\Omega \ to \ 1 \ M\Omega).$

When the level of liquid rises above the probe for a period exceeding the value of time delay T set on the front panel, the relay energises and remains on until the level of liquid drops back below the probe.

If the level of liquid drops back below the level set before the time delay elapses the relay does not come on.

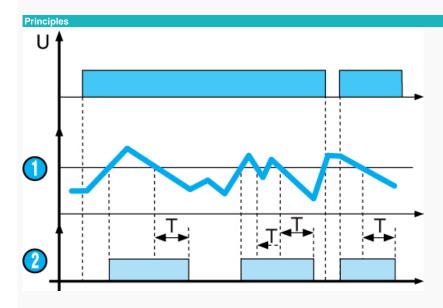
Note

When the power returns after a power break, the output relay only energises after delay time T if the level of liquid is above the threshold.

N°	Legend
0	Level
②	Relay

Monitoring a level, filling function, deactivation time

(level : 1 - off delay, function Up LS (Low Sensitivity : 250 Ω to 5 kΩ) or Up St (Standard Sensitivity : 5 kΩ to 100 kΩ) or Up HS (High Sensitivity : 50 kΩ to 1 MΩ).


When the liquid level drops below the probe the relay energises immediately and remains on until the level of liquid reaches the probe again and remains above it for a period exceeding time delay T set on the front panel.

If the level of liquid drops back below the level set before the time delay elapses, the relay remains on.

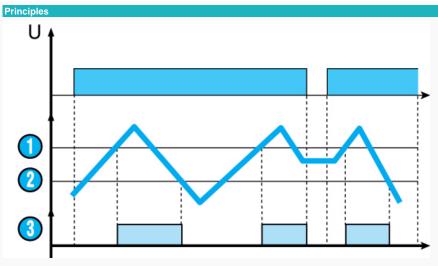
Note

When the power returns after a power break, the output relay energises immediately if the liquid level is below the threshold.

Nº	Legend
0	Level
0	Relay

Monitoring a level, emptying function, deactivation time

 $(level: 1 - off \ delay, function \ Dwn \ LS \ (Low \ Sensitivity: 250 \ \Omega \ to \ 5 \ k\Omega) \ or \ Dwn \ St \ (Standard \ Sensitivity: 5 \ k\Omega \ to \ 100 \ k\Omega) \ or \ Dwn \ HS \ (High \ Sensitivity: 50 \ k\Omega \ to \ 1 \ M\Omega).$


When the level of liquid rises above the probe the relay energises immediately and remains on until the level of liquid drops back below the probe for a period exceeding the value of time delay T set on the front panel.

If the level of liquid returns above the level set before the time delay elapses the relay remains on.

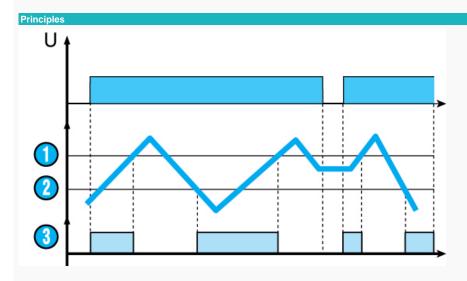
Note

When the power returns after a power break, the output relay energises immediately if the level of liquid is above the threshold.

N _o	Legend
0	Level
0	Relay

Monitoring two levels, emptying function

(level : 2, function Dwn LS (Low Sensitivity : 250 Ω to 5 k Ω), Dwn St (Standard Sensitivity : 5 k Ω to 100 k Ω), Dwn HS (High Sensitivity : 50 k Ω to 1 M Ω).


The output relay remains open as long as the level of liquid has not reached the maximum probe. Once the maximum level is reached the contact closes and the tank can then be emptied (valve opened, pump started, etc). When the level drops below the minimum level the contact opens and interrupts the emptying process.

Note: when monitoring two levels the time delay preventing the wave effect is not in operation.

Note

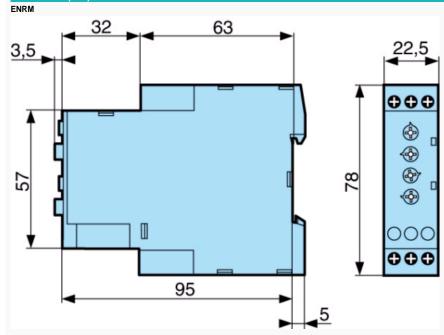
When the power returns after a power break, the output relay energises immediately if the level of liquid is above the threshold.

N°	Legend
1	Maximum level
②	Minimum level
③	Output relay : Down

Monitoring two levels, filling function

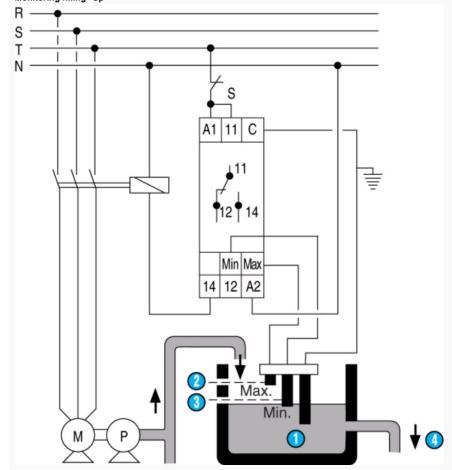
 $(level: 2, function \ Up \ LS \ (Low \ Sensitivity: 250 \ \Omega \ to \ 5 \ k\Omega) \ or \ Up \ St \ (Standard \ Sensitivity: 5 \ k\Omega \ to \ 100 \ k\Omega) \ or \ Up \ HS \ (High \ Sensitivity: 50 \ k\Omega \ to \ 1 \ M\Omega).$

The output relay remains on as long as the level of liquid has not reached the maximum probe. As soon as the maximum level is reached the contact opens and pumping stops. When the level drops below the minimum level the contact closes again and pumping restarts to bring the level of liquid back up.


Note: When monitoring the two levels the time delay preventing the wave effect is not in operation.

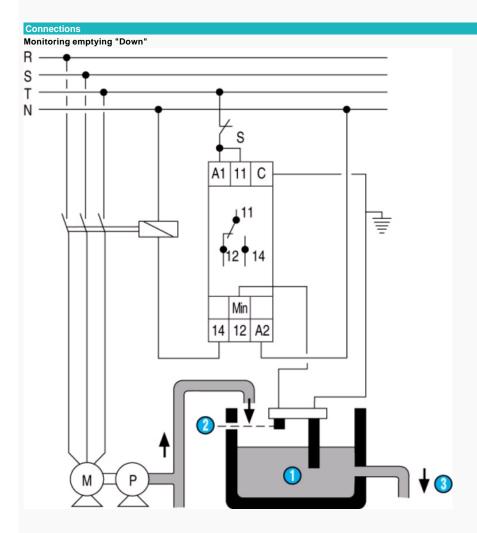
Note

When the power returns after a power break, the output relay energises immediately if the level of liquid is below the threshold.


Nº	Legend
0	Maximum level
②	Minimum level
0	Output relay : Up

Dimensions (mm)

Connections


Adjusting two levels Monitoring filling "Up"

A1-A2 : power supply

N° Legend

0	Common
②	Off
•	On
0	Output

A1-A2 : power supply

Nº	Legend
•	Common
②	Off
③	Output